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1. Introduction

Differential and integral equations with time delays appear frequently as mathematical models in natural sciences, eco-
nomics and engineering, and they are used to describe propagation and transport phenomena (see, e.g., [1,6–9,11,15,17,22]).
In control engineering the time delay appears in the control naturally, since time is needed to sense information and to react
to it. The first control applications using time delays go back to the 30s [4,5], and since that it is an extensively studied field
(see, e.g., [6,7,23,25,29]).

Stability of a differential equation is a central question in engineering applications, especially in control theory. Many dif-
ferent concepts of stability has been investigated in the literature, e.g., stability of an equilibrium of the system, orbital sta-
bility of the system output trajectory, or structural stability of the system. Because of its simplicity and weakness, the notion
of bounded-input bounded-output (BIBO) stability was extensively studied and used in control theory for different classes of
dynamical systems (see, e.g., [2,10,16,18–20,26–28]). We say that a control system is BIBO stable, if any bounded input pro-
duces a bounded output. It is known (see, e.g., [2]) that a linear control system _x ¼ Axþ Bu is BIBO stable, if the trivial solu-
tion of _x ¼ Ax is asymptotically stable, i.e., all eigenvalues of A have negative real parts.

Using a novel approach, in this paper we study the BIBO stability of a feedback control system with time delays. First we
rewrite the control system as a Volterra integral equation, then, motivated by the results obtained for discrete Volterra sys-
tems [12], we formulate sufficient conditions for the boundedness of nonlinear Volterra integral equations, and finally we
apply our general results to obtain BIBO stability of the control system. Also we introduce a new notion of BIBO stability,
which we call local BIBO stability.

The rest of the article is organized as follows. In Section 2 we give the system description, some notations and definitions
which are used throughout the paper. In Section 3 we state our main results. In Section 4 we give sufficient conditions for the
boundedness of the solution of Volterra integral equations. In Section 5 some special estimates are studied. In Section 6 we
give the proofs of our main results.
. All rights reserved.
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2. System description and preliminaries

Throughout this paper R, Rþ, Rn and Rn�n denote the set of real numbers, nonnegative real numbers, n-dimensional real
column vectors and n� n-dimensional real matrices, respectively. The maximum norm on Rn is denoted by k � k, i.e.,
kxk :¼max16i6njxij, where x ¼ ðx1; . . . ; xnÞT . The matrix norm on Rn�n generated by the maximum vector norm will be denoted
by k � k, as well. Ln

1 will denote the set of bounded functions r : Rþ ! Rn�n with norm krk1 :¼ suptP0krðtÞk. CðX;YÞ denotes
the set of continuous functions mapping from X to Y.

In this paper we consider the nonlinear control system
_xðtÞ ¼ gðt; xðt � rðtÞÞÞ þ uðtÞ; t P 0; ð2:1Þ
where xðtÞ;uðtÞ are the state vector, control input, respectively, rðtÞP 0 is a continuous function and g : Rþ � Rn ! Rn

satisfies
kgðs; ~xÞk 6 bðsÞ/ k~xkð Þ; s 2 Rþ; ~x 2 Rn; ð2:2Þ
where bðsÞ > 0 is a continuous function, / : Rþ ! Rþ is a monotone nondecreasing mapping. Throughout the paper, we as-
sume that the output of the system is the whole state xðtÞ, so we use the state in the feedback control.

We assume that the uncontrolled system, i.e., (2.1) with u � 0 has unbounded solutions. Our goal is to find a control law
of the form
uðtÞ ¼ �Dxðt � sÞ þ rðtÞ ð2:3Þ
which guarantees that the closed-loop system
_xðtÞ ¼ gðt; xðt � rðtÞÞÞ � Dxðt � sÞ þ rðtÞ; t > 0;
xðtÞ ¼ wðtÞ; �t0 6 t 6 0

�
ð2:4Þ
is BIBO stable. We suppose that the feedback gain in (2.3) is a positive diagonal matrix, i.e.,
D ¼ diagðd1; . . . ;dnÞ; di > 0; i ¼ 1; . . . ; n:
r 2 Ln
1 is the reference input, t0 :¼ max s;�inf tP0ft � rðtÞgf g;w is a continuous vector-valued initial function and

kwkt0
:¼max�t06t60kwðtÞk.

In applications the time delay s in the control (2.3) appears naturally, since time is needed to sense information and react
to it. Using diagonal feedback (2.3) is the simplest possible control law, and in Theorem 3.1 and 3.3 we give sufficient con-
ditions on how to select the feedback gain and the time delay s to guarantee the boundedness of the solutions.

Based on the definition of BIBO stability in [24], we introduce the next definition.

Definition 2.1. The control system (2.4) with reference input r : Rþ ! Rn is BIBO stable if there exist positive constants c1
and c2 ¼ c2ðkwkt0

Þ satisfying
kxðtÞk 6 c1krk1 þ c2; t P 0
for every reference input r 2 Ln
1.

In Theorem 3.3 below we need a weaker version of BIBO stability. Next we introduce this new notion, which we call local
BIBO stability.

Definition 2.2. The control system (2.4) with reference input r : Rþ ! Rn is locally BIBO stable if there exist positive
constants d1; d2 and c satisfying
kxðtÞk 6 c; t P 0
provided that kwkt0
< d1 and krk1 < d2.

Our approach is the following. We associate the linear system
_zðtÞ ¼ �Dzðt � sÞ; t P 0 ð2:5Þ
with the constant delay s and the initial condition
zðtÞ ¼ wðtÞ; �s 6 t 6 0 ð2:6Þ
to (2.4). Then the state equation (2.4) can be considered as the nonlinear perturbation of (2.5), so the variation of constants
formula [14] yields
xðtÞ ¼ zðtÞ þ
Z t

0
Wðt � sÞ gðs; xðs� rðsÞÞÞ þ rðsÞ½ �ds; t P 0: ð2:7Þ
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Here zðtÞ is the solution of (2.5)–(2.6) and WðtÞ is the fundamental solution of (2.5), i.e., the solution of initial value problem
_WðtÞ ¼ �DWðt � sÞ; t P 0;

WðtÞ ¼
0; �s 6 t < 0;
I; t ¼ 0;

�

where I is the identity matrix and 0 is the zero matrix. Since D is a diagonal matrix, it is easy to see that WðtÞ is diagonal
matrix too, and WðtÞ ¼ diagðw1ðtÞ; . . . ;wnðtÞÞ, where for i ¼ 1; . . . ;n
_wiðtÞ ¼ �diwiðt � sÞ; t P 0;

wiðtÞ ¼
0; �s 6 t < 0;
1; t ¼ 0:

�
ð2:8Þ
We can rewrite Eq. (2.7) as a Volterra integral equation
xðtÞ ¼
Z t

0
f ðt; s; xð�ÞÞdsþ hðtÞ; t P 0; ð2:9Þ
where
hðtÞ :¼ zðtÞ þ
Z t

0
Wðt � sÞrðsÞds; ð2:10Þ
and
f ðt; s; xð�ÞÞ :¼Wðt � sÞgðs; xðs� rðsÞÞÞ: ð2:11Þ
In Section 4 we will study the boundedness of the solutions of nonlinear Volterra integral equations, and apply our results for
the boundedness of (2.4).

3. Main results

Our main goal in this section is to formulate sufficient conditions which grantee BIBO stability of the control system (2.4).
Our first result is given for the case when g in (2.1) has a sub-linear estimate, i.e., when /ðtÞ ¼ tp, with 0 < p < 1 in (2.2).

Theorem 3.1. Let g : Rþ � Rn ! Rn be a continuous function which satisfies inequality (2.2) with /ðtÞ ¼ tp;0 < p < 1; t P 0. The
feedback control system (2.4) is BIBO stable if
kbk1 :¼ sup
tP0

bðtÞ <1; 0 < di <
p
2s

; t P 0; i ¼ 1; . . . ;n ð3:1Þ
hold.

The following theorem gives a sufficient condition for the BIBO stability in the case of a linear estimate.

Theorem 3.2. Let g : Rþ � Rn ! Rn be a continuous function which satisfies inequality (2.2) with /ðtÞ ¼ t; t P 0. The feedback
control system (2.4) is BIBO stable if
kbk1 < di 6
1
es
; t P 0; i ¼ 1; . . . ;n ð3:2Þ
holds.

In the super-linear case, when /ðtÞ ¼ tp, p > 1 in (2.2), we show that the control system (2.4) is locally BIBO stable.

Theorem 3.3. Let g : Rþ � Rn ! Rn be a continuous function which satisfies inequality (2.2) with /ðtÞ ¼ tp; p > 1; t P 0. Then
the solution x of the feedback control system (2.4) is locally BIBO stable if (3.2) holds.

The proofs of the main results are given in Section 6.

4. Volterra integral equation

In this section we obtain sufficient conditions for the boundedness of the solutions of nonlinear Volterra integral
equations.
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We consider the nonlinear Volterra integral equation
xðtÞ ¼
Z t

0
f ðt; s; xð�ÞÞdsþ hðtÞ; t P 0; ð4:1Þ
with initial condition
xðtÞ ¼ wðtÞ; t 2 ½�~t0;0�; ð4:2Þ
where ~t0 P 0 is fixed, and the following conditions are satisfied.

(A1) The function f : Rþ � Rþ � C ½�~t0;1Þ;Rn
� �

! Rn is a Volterra-type functional, i.e., f is continuous and
f ðt; s; xð�ÞÞ ¼ f ðt; s; yð�ÞÞ for all 0 6 s 6 t and x; y 2 C ½�~t0;1Þ;Rn� �

if xð~lÞ ¼ yð~lÞ;�~t0 6 ~l 6 s.
(A2) For any 0 6 s 6 t and x 2 C ½�~t0;1Þ;Rn

� �
,

jfiðt; s; xð�ÞÞj 6 kiðt; sÞ/ð max
�~t06h6s

jjxðhÞjjÞ; i ¼ 1; . . . ;n
holds, where f ðtÞ ¼ ðf1ðtÞ; . . . ; fnðtÞÞT . Here ki : fðt; sÞ : 0 6 s 6 tg ! Rþ; i ¼ 1; . . . ;n is continuous, and / : Rþ ! Rþ is a mono-
tone nondecreasing mapping such that /ð~vÞ > 0; ~v > 0, and /ð0Þ ¼ 0.

(A3) h : Rþ ! Rn is continuous and hðtÞ ¼ ðh1ðtÞ; . . . ;hnðtÞÞT ; t P 0.
(A4) w 2 C ½�~t0;0�;Rn

� �
.

The next definitions will be useful in the proofs of our results on Volterra integral equations.
Definition 4.1. Let the functions / and ki be defined by assumption (A2). We say that the nonnegative constant l has
property ðPTÞ with T P 0 if there is v P l, such that
/ðlÞ
Z T

0
kiðt; sÞdsþ /ðvÞ

Z t

T
kiðt; sÞdsþ jhiðtÞj < v ; t P T; i ¼ 1; . . . ;n ð4:3Þ
holds.

Definition 4.2. We say that initial function w 2 C ½�~t0;0�;Rn� �
belongs to the set S if there exists T P 0 such that
lT :¼ max
�~t06t6T

kxðtÞk
has property ðPTÞ, where x : ½�~t0;1Þ ! Rn is the solution of (4.1)–(4.2).

Remark 4.3. If there exist a T P 0 and two positive constants lT and v such that (4.3) holds, then
IT :¼ max
16i6n

sup
tPT

Z T

0
kiðt; sÞds <1; ð4:4Þ

JT :¼max
16i6n

sup
tPT

Z t

T
kiðt; sÞds <1; ð4:5Þ

HT :¼max
16i6n

sup
tPT
jhiðtÞj <1: ð4:6Þ
Conditions (4.4) and (4.5) are equivalent to
J0 :¼max
16i6n

sup
tP0

Z t

0
kiðt; sÞds <1; ð4:7Þ
and if T ¼ 0 condition (4.6) becomes
H0 :¼max
16i6n

sup
tP0
jhiðtÞj <1: ð4:8Þ
The following result gives a sufficient condition for the boundedness of the solution of (4.1).
Theorem 4.1. Let (A1)–(A4) be satisfied and the initial function w belongs to the set S. Then the solution x of, (4.1)–(4.2) is
bounded.
Proof. Since the initial function w belongs to the set S, by Definition 4.2 there exists T P 0 such that lT :¼max�~t06t6TkxðtÞk
has property ðPTÞ, where x is the solution of (4.1)–(4.2). From (4.1) we get
xðtÞ ¼
Z T

0
f ðt; s; xð�ÞÞdsþ

Z t

T
f ðt; s; xð�ÞÞdsþ hðtÞ; t P T:
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Hence (A2) yields for i ¼ 1; . . . ;n
jxiðtÞj 6
Z T

0
jfiðt; s; xð�ÞÞjdsþ

Z t

T
jfiðt; s; xð�ÞÞjdsþ jhiðtÞj

6

Z T

0
kiðt; sÞ/ max

�~t06~l6T
kxð~lÞk

� �
dsþ

Z t

T
kiðt; sÞ/ max

�~t06~l6s
kxð~lÞk

� �
dsþ jhiðtÞj

6 /ðlTÞ
Z T

0
kiðt; sÞdsþ

Z t

T
kiðt; sÞ/ max

�~t06~l6s
kxð~lÞk

� �
dsþ jhiðtÞj; t P T: ð4:9Þ
Let v P lT be such that (4.3) holds with l ¼ lT . Then, in particular,
/ðlTÞ
Z T

0
kiðT; sÞdsþ jhiðTÞj < v; i ¼ 1; . . . ; n;
so (4.9) with t ¼ T implies jxiðTÞj < v for all i ¼ 1; . . . ; n, hence kxðTÞk < v .
Now we show that kxðtÞk is bounded for all t > T . For sake of contradiction, assume that kxðtÞk is an unbounded function.

Since it is continuous and kxðTÞk < v , there exists t1 > T such that kxðt1Þk > v . Let �t :¼ infft > T : kxðtÞk > vg. Then the
continuity of x and lT 6 v implies max�~t06~l6�tkxð~lÞk ¼ kxð�tÞk ¼ v . Therefore there exists i such that jxið�tÞj ¼ v . Then from

(4.9) with t ¼ �t, the monotonicity of / and using that lT has property ðPTÞ, we obtain
v ¼ jxið�tÞj 6 /ðlTÞ
Z T

0
kið�t; sÞdsþ

Z �t

T
kið�t; sÞ/ max

�~t06~l6s
kxð~lÞk

� �
dsþ jhið�tÞj

6 /ðlTÞ
Z T

0
kið�t; sÞdsþ /ðvÞ

Z �t

T
kið�t; sÞdsþ jhið�tÞj < v ;
which is a contradiction. So the solution x of (4.1) is bounded by v. h
5. Some special estimates

In this section, we give some applications of our Theorem 4.1. Throughout this section we assume that the nonlinear func-
tion f in (4.1) can be estimated by the function /ðtÞ ¼ tp; t > 0 with p > 0 in (A2). There are three cases:

1. Sub-linear estimate 0 < p < 1;
2. Linear estimate p ¼ 1;
3. Super-linear estimate p > 1.

5.1. Sub-linear estimate

Our aim in this subsection is to establish a sufficient, as well as a necessary and sufficient condition for the boundedness
of all solutions of (4.1) and for the scalar case of (4.1), respectively.

The next result provides a sufficient condition for the boundedness of the solutions of (4.1) in the sub-linear case.

Theorem 5.1. Let (A1)–(A4) be satisfied and /ðtÞ ¼ tp; t P 0, with a fixed p 2 ð0;1Þ. If (4.7) and (4.8) hold, then all solutions of
(4.1) are bounded.
Proof. It follows from (4.7) and (4.8) that J0 <1 and H0 <1. Let w 2 C ½�~t0;0�;Rn� �
, and x be the corresponding solution of

(4.1)–(4.2). For l0 :¼max�~t06t60kwðtÞk, there exists v P l0 large enough such that
vp�1J0 þ
1
v H0 < 1: ð5:1Þ
Therefore
vpJ0 þ H0 < v :
By the definitions of J0 and H0, we get
vP
Z t

0
kiðt; sÞdsþ jhiðtÞj 6 vpJ0 þ H0 < v ; t P 0; i ¼ 1; . . . ;n:
Hence by Definition 4.1, we obtain l0 has property ðP0Þ with T ¼ 0. Since (A1)–(A4) are satisfied and l0 has property ðP0Þ,
then, by Theorem 4.1, the solution x of (4.1) is bounded.
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We consider the scalar Volterra integral equation
xðtÞ ¼
Z t

0
kðt; sÞxpðs� sðsÞÞdsþ hðtÞ; t P 0; ð5:2Þ
with initial condition
xðtÞ ¼ wðtÞ; t 2 ½�~t0;0�; ð5:3Þ
where

(B) k : fðt; sÞ : 0 6 s 6 tg ! Rþ and h : Rþ ! Rþ are continuous, 0 < p < 1, s 2 C Rþ;Rþð Þ;~t0 :¼ �inf tP0ft � sðtÞg > 0 is
finite and w 2 C ½�~t0;0�; ð0;1Þ

� �
.

The condition (B) implies that the solutions of (5.2)–(5.3) are positive.
The following result provides a necessary and sufficient condition for the boundedness of the positive solutions of (5.2).

The necessary part of the next theorem was motivated by a similar result of Lipovan [21] proved for convolution-type inte-
gral equation.

Theorem 5.2. Assume (B),
lim inf
t!1

Z t

0
kðt; sÞdsþ hðtÞ

� �
> 0; ð5:4Þ
and
 Z t

0
kðt; sÞdsþ hðtÞ > 0; t P 0: ð5:5Þ
Then the solution of (5.2)–(5.3) is bounded for all w 2 C ½�~t0;0�; ð0;1Þ
� �

, if and only if (4.7) and (4.8) are satisfied.
Proof. Suppose (4.7) and (4.8) are satisfied. Clearly, by Theorem 5.1 the solution of (5.2)–(5.3) is bounded for all
w 2 C ½�~t0;0�; ð0;1Þ

� �
.

Conversely, let the solution x of (5.2)–(5.3) be bounded on Rþ. First we prove that the solution x > 0. Assume for the sake
of contradiction that xðtÞ 6 0 for some t. Then there exists k > 0 such that xðtÞ > 0; t 2 ½0; kÞ and xðkÞ ¼ 0. From (5.5) it follows
that there exists an � > 0 such that
Z k��

0
kðk; sÞdsþ hðkÞ > 0:
From (5.2) with t ¼ k we have
0 ¼ xðkÞ

¼
Z k

0
kðk; sÞxpðs� sðsÞÞdsþ hðkÞ

P
Z k��

0
kðk; sÞxpðs� sðsÞÞdsþ hðkÞ

P min
�~t06l6k��

xpðlÞ
Z k��

0
kðk; sÞdsþ hðkÞ

P
Z k��

0
kðk; sÞdsþ hðkÞ

� �
min min

�~t06l6k��
xpðlÞ;1

� �

> 0;
which is a contradiction.
Clearly, the positivity of x and (5.2) yield
xðtÞP hðtÞ; for all t P 0;
hence condition (4.8) is satisfied.
Next we prove (4.7). For any t P T� > 0 we get
xðtÞP
Z T�

0
kðt; sÞxpðs� sðsÞÞds P min

�~t06l6T�
xpðlÞ

Z T�

0
kðt; sÞds:
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Therefore the boundedness of x implies
sup
tP0

Z T�

0
kðt; sÞds <1: ð5:6Þ
Define now
m :¼ lim inf
t!1

xðtÞ;
which is finite. We show that m > 0. Assume for the sake of contradiction that m ¼ 0. In this case we can find a strictly
increasing sequence ðtnÞnP1,such that
xðtnÞ ¼ inf
�~t06t6tn

xðtÞ > 0; and xðtnÞ ! 0 as n!1:
From (5.2) with t ¼ tn we obtain
xðtnÞ ¼
Z tn

0
kðtn; sÞxpðs� sðsÞÞdsþ hðtnÞ

P
Z tn

0
kðtn; sÞ inf

�~t06l6tn

xpðlÞdsþ hðtnÞ

¼ xpðtnÞ
Z tn

0
kðtn; sÞdsþ hðtnÞ:
Since xðtnÞ > 0, we have
x1�pðtnÞP
Z tn

0
kðtn; sÞdsþ hðtnÞ

xpðtnÞ
:

For n large enough such that 0 < xpðtnÞ 6 1, we get
x1�pðtnÞP
Z tn

0
kðtn; sÞdsþ hðtnÞ:
Taking limit of the last inequality, we obtain
lim
n!1

Z tn

0
kðtn; sÞdsþ hðtnÞ

� �
¼ 0;
which contradicts to (5.4). So m > 0. Therefore there exists T� P 0 such that
xðtÞP 1
2

m > 0; t P T�:
Hence
xðtÞ ¼
Z t

0
kðt; sÞxpðs� sðsÞÞdsþ hðtÞ

P
Z t

T�
kðt; sÞxpðs� sðsÞÞds

P
1
2p mp

Z t

T�
kðt; sÞds; t P T�:
By the boundedness of the solution x we get
sup
tPT�

Z t

T�
kðt; sÞds <1:
This and (5.6) imply condition (4.7). h
5.2. Linear estimate

Our aim in this subsection is to obtain a sufficient condition for the boundedness of the solutions of a linear Volterra inte-
gral equation.

The following result gives a sufficient condition for the boundedness.

Theorem 5.3. Assume (A1)-(A4) are satisfied and /ðtÞ ¼ t; t P 0. Then all solutions of (4.1) are bounded, if for some T P 0 one of
the following conditions hold:
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(i) (4.4) and (4.6) hold, and

JT :¼max
16i6n

sup
tPT

Z t

T
kiðt; sÞds < 1; i ¼ 1; . . . ;n: ð5:7Þ

(ii) for all t P T; i ¼ 1; . . . ;n,

JT :¼max
16i6n

sup
tPT

Z t

T
kiðt; sÞds ¼ 1;

Z t

T
kiðt; sÞds < 1

sup
tPT

1�
Z t

T
kiðt; sÞds

� ��1 Z T

0
kiðt; sÞds <1; ð5:8Þ

and
sup
tPT

1�
Z t

T
kiðt; sÞds

� ��1

jhiðtÞj <1: ð5:9Þ
Proof. Let w 2 C ½�~t0;0�;Rn� �
, and x be the solution of (4.1)–(4.2). We show that x is bounded if (i) or (ii) holds. Let
lT :¼ max
�~t06t6T

kxðtÞk:
First we prove that lT has property ðPTÞ under condition (i). By (4.4) and (4.6) we have IT <1 and HT <1. Therefore there
exists v P lT such that
ð1� JTÞ
�1 lT IT þ HT
� �

< v;
so
lT IT þ HT < ð1� JTÞv:
Hence for all t P T; i ¼ 1; . . . ;n, we obtain
lT

Z T

0
kiðt; sÞdsþ jhiðtÞj 6 lT IT þ HT < ð1� JTÞv 6 1�

Z t

T
kiðt; sÞds

� �
v ;
therefore
lT

Z T

0
kiðt; sÞdsþ v

Z t

T
kiðt; sÞdsþ jhiðtÞj < v; t P T; i ¼ 1; . . . ;n:
Then lT has property ðPTÞ, and hence, by Theorem 4.1, the solution x of (4.1) is bounded.
Next we prove that lT has property ðPTÞ if (ii) is satisfied. For all t P T
1�
Z t

T
kiðt; sÞds

� ��1

> 0; i ¼ 1; . . . ; n;
(5.8) and (5.9) imply
sup
tPT

1�
Z t

T
kiðt; sÞds

� ��1

lT

Z T

0
kiðt; sÞdsþ jhiðtÞj

� �
<1:
Then there exists v P lT large enough such that
1�
Z t

T
kiðt; sÞds

� ��1

lT

Z T

0
kiðt; sÞdsþ jhiðtÞj

� �
< v ; t P T;
which yields
lT

Z T

0
kiðt; sÞdsþ v

Z t

T
kiðt; sÞdsþ jhiðtÞj < v; t P T; i ¼ 1; . . . ;n:
Then lT has property ðPTÞ, and hence, by Theorem 4.1, the solution x of (4.1) is bounded. h

The next example illustrates the applicability of Theorem 5.3 in a case when condition (ii) holds for a large
enough T.
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Example 5.4. We consider the scalar Volterra integral equation
xðtÞ ¼
Z t

0

2
1� 0:5e�2jt�ln 2j e

�2ðt�sÞxðsÞdsþ ce�2t; t P 0:
Here hðtÞ ¼ ce�2t; c 2 R and kðt; sÞ ¼ 2
1�0:5e�2jt�ln 2j e�2ðt�sÞ;~t0 ¼ 0.

Clearly suptP0jhðtÞj ¼ jcj <1, and
Z t

0
kðt; sÞds ¼

Z t

0

2
1� 0:5e�2jt�ln 2j e

�2ðt�sÞds ¼ 1
1� 0:5e�2jt�ln 2j ð1� e�2tÞ;
hence
lim
t!1

Z t

0
kðt; sÞds ¼ 1:
Let T1 :¼ ln 2, then
Z T1

0
kðT1; sÞds ¼ 1

ð1� 0:5Þ 1� e�2 ln 2
� �

¼ 3
2
> 1:
This means that
sup
tP0

Z t

0
kðt; sÞds ¼ M > 1;
therefore conditions of Theorem 5.3 do not hold with T ¼ 0.
If we take T :¼ ln 5, then we obtain
Z t

T
kðt; sÞds ¼ 1� 25e�2t

1� 2e�2t
< 1; t P T
and
sup
tPT

Z t

T
kðt; sÞds ¼ 1:
Moreover
1�
Z t

T
kðt; sÞds

� ��1 Z T

0
kðt; sÞds ¼ 24e�2tð1� 2e�2tÞ

23e�2tð1� 2e�2tÞ ¼
24
23

; t P T;
and
1�
Z t

T
kðt; sÞds

� ��1

jhðtÞj ¼ ð1� 2e�2tÞ
23e�2t

jcje�2t <
jcj
23

; t P T:
Then condition (ii) in Theorem 5.3 is satisfied with this T, therefore x is bounded.
Here our result is applicable but the several results in the literature are not applicable (see, e.g., Proposition 1.4.2 in [3]).
5.3. Super-linear estimate

Our aim in this subsection is to obtain a sufficient condition for the boundedness in the super-linear case.

Theorem 5.5. Assume that conditions (A1)-(A4) are satisfied with /ðtÞ ¼ tp; t > 0, where p > 1, (4.7), (4.8) hold, J0 > 0 and let
kwk~t0

:¼max�~t06t60kwðtÞk. Then the solution x of (4.1)–(4.2) is bounded if one of the following conditions is satisfied

(i) kwk~t0
6

1
pJ0

� 	 1
p�1

and H0 <
p�1

p
1

pJ0

� 	 1
p�1

;
(ii) H0 < kwk~t0

� J0 kwk~t0

� 	p
.

Proof. Assume (4.7) and (4.8) are satisfied.

(i) Since kwk~t0
6

1
pJ0

� 	 1
p�1

and
H0 <
p� 1

p
1

pJ0

� � 1
p�1

¼ 1
pJ0

� � 1
p�1

� J0
1

pJ0

� � p
p�1

;
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then v :¼ 1
pJ0

� 	 1
p�1

satisfies inequality
H0 < v � J0vp: ð5:10Þ

(ii) Since H0 < kwk~t0
� J0 kwk~t0

� 	p
;v ¼ kwk~t0

satisfies inequality (5.10).

Hence in both cases the condition (4.3) is satisfied with T ¼ 0, therefore l0 :¼ kwk~t0
has property ðP0Þ. Then the conditions of

Theorem 4.1 hold, so the solution of (4.1) is bounded. h
6. The proof of the main results

In this section we give the proofs our main results (Theorems 3.1, 3.2 and 3.3) using our results obtained for Volterra inte-
gral equations.

First we give the proof of Theorem 3.1 for the sub-linear case.

Proof. (Proof of Theorem 3.1) First note that the feedback control system (2.4) is equivalent to the Volterra integral equation
(4.1), where h and f are defined by (2.10) and (2.11), respectively. Clearly, (A1) is satisfied with ~t0 ¼ t0.

By [14] and under our conditions, for i ¼ 1; . . . ;n, the solution zi of the initial value problem
_ziðtÞ ¼ �diziðt � sÞ; t P 0 ð6:1Þ

with initial condition
ziðtÞ ¼ wiðtÞ; �s 6 t 6 0 ð6:2Þ

satisfies the inequality
jziðtÞj 6 Mkwikse�ai t ; t P �s; ð6:3Þ
where M and ai are positive constants. Hence every solution of (6.1) tends to zero as t !1, and this implies that every solu-
tion of (2.5) tends to the zero vector as t !1, and
kzk1 :¼ sup
tP0
kzðtÞk 6 Mkwks <1: ð6:4Þ
From (3.1) it follows (see, e.g., Proposition 2.1 in [13]) that the fundamental solution wi of (6.1)–(6.2) satisfies
Ci :¼
Z 1

0
jwiðtÞjdt <1; i ¼ 1; . . . ; n; ð6:5Þ
where Ci is positive constant.
From (2.7), for all i ¼ 1; . . . ;n, we have
xiðtÞ ¼ ziðtÞ þ
Z t

0
wiðt � sÞ½giðs; xðs� rðsÞÞÞ þ riðsÞ�ds; t P 0; i ¼ 1; . . . ;n;
where xðtÞ ¼ ðx1ðtÞ; . . . ; xnðtÞÞT ; gðt; xÞ ¼ ðg1ðt; xÞ; . . . ; gnðt; xÞÞ
T
; rðtÞ ¼ ðr1ðtÞ; . . . ; rnðtÞÞT and zðtÞ ¼ ðz1ðtÞ; . . . ; znðtÞÞT . Therefore

(2.10) and (2.11) imply
fiðt; s; xð�ÞÞ ¼ wiðt � sÞgiðs; xðs� rðsÞÞÞ and hiðtÞ ¼ ziðtÞ þ
Z t

0
wiðt � sÞriðsÞds:
Hence by (2.2)
jfiðt; s; xð�ÞÞj 6 jwiðt � sÞj jgiðs; xðs� rðsÞÞÞj 6 jwiðt � sÞjbðsÞ/ max
�t06l6s

kxðlÞk
� �

;

so (A2) holds with kiðt; sÞ :¼ jwiðt � sÞjbðsÞ; 0 6 s 6 t.
By (3.1), (6.4), (6.5) and the definition of the infinity norm, we obtain
H0 :¼max
16i6n

sup
tP0
jhiðtÞj

6max
16i6n

sup
tP0
jziðtÞj þmax

16i6n
sup
tP0

Z t

0
jwiðt � sÞjkrðsÞkds

6max
16i6n

sup
tP0
kziðtÞk þ krk1max

16i6n

Z 1

0
jwiðtÞjdt ð6:6Þ

¼ kzk1 þ Ckrk1
6 Mkwks þ Ckrk1
6 Mkwkt0

þ Ckrk1; ð6:7Þ
where C :¼maxi¼1;...;nðCiÞ and t0 :¼max s;�inf tP0ft � rðtÞgf g, therefore (4.8) holds.
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By condition (3.1) we get
Z t

0
kiðt; sÞds ¼

Z t

0
jwiðt � sÞjbðsÞds; t P 0; i ¼ 1; . . . ;n:
Hence
J0 :¼max
16i6n

sup
tP0

Z t

0
kiðt; sÞds 6 kbk1max

16i6n

Z 1

0
jwiðtÞjdt 6 Ckbk1 <1; ð6:8Þ
i.e., (4.7) holds with T ¼ 0. Then the conditions of Theorem 5.1 for 0 < p < 1 with T ¼ 0 are satisfied, hence the solution x of
(2.4) is bounded.

Now we show that the inequality (5.1) is satisfied with
v :¼max 3ðMkwkt0
þ Ckrk1Þ; ð3Ckbk1Þ

1
1�p

� 	
:

We have v > 2Ckbk1
� � 1

1�p, and so (6.8) yields
vp�1J0 <
J0

2Ckbk1
6

1
2
:

Similarly, v > 2ðMkwkt0
þ Ckrk1Þ and (6.7) imply
1
v H0 <

H0

2ðMkwkt0
þ Ckrk1Þ

6
1
2
:

Therefore (5.1) is satisfied, hence by Theorem 5.1 we get
kxðtÞk < v ¼max 3ðMkwkt0
þ Ckrk1Þ; ð3Ckbk1Þ

1
1�p

� 	
; t P 0:
So
kxðtÞk < 3Ckrk1 þmax 3Mkwkt0
; ð3Ckbk1Þ

1
1�p

� 	
¼ c1krk1 þ c2; t P 0;
where c1 :¼ 3C and c2 :¼max 3Mkwkt0
; ð3Ckbk1Þ

1
1�p

� 	
. Hence the feedback control system (2.4) is BIBO stable. h

The next Lemma will be useful in the proof of Theorem 3.2.

Lemma 6.1. Assume the conditions of Theorem 3.2 are satisfied. The inequalities
jhiðtÞj þ v
Z t

0
kiðt; sÞds < v ; t P 0; i ¼ 1; . . . ;n ð6:9Þ
are satisfied with
v :¼max
krk1

d0 1� kbk1d0

� 	þ kzk1
1� kbk1d0

;1

0
@

1
A;
where d0 :¼ minðd1; . . . ; dnÞ;W ¼ diagðw1; . . . ;wnÞ is the fundamental solution of (2.5), z is the solution of the initial value prob-
lem (2.5)–(2.6), kzk1 :¼ suptP0kzðtÞk and kiðt; sÞ :¼ wiðt � sÞbðsÞ;0 6 s 6 t.
Proof. From (3.2) it follows (see, e.g., Theorem 3.1 in [13]) that the fundamental solution wi of (6.1)–(6.2) is positive and
Z 1

0
wiðtÞdt ¼ 1

di
and

Z t

0
wiðsÞds <

1
di
; i ¼ 1; . . . ;n; t P 0: ð6:10Þ
Hence
J0 :¼max
16i6n

sup
tP0

Z t

0
kiðt; sÞds

¼ max
16i6n

sup
tP0

Z t

0
wiðt � sÞbðsÞds

6 max
16i6n
kbk1

Z 1

0
wiðtÞdt

¼ kbk1
d0

: ð6:11Þ
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By (3.2) and (6.11), we have for t P 0; i ¼ 1; . . . ;n
v P
krk1

d0 1� kbk1d0

� 	þ kzk1
1� kbk1d0

>
krk1

R t
0 diwiðt � sÞds

d0 1�
R t

0 wiðt � sÞbðsÞds
� 	þ kzðtÞk

1�
R t

0 wiðt � sÞbðsÞds

P

R t
0 wiðt � sÞkrðsÞkds

1�
R t

0 wiðt � sÞbðsÞds
þ kzðtÞk

1�
R t

0 wiðt � sÞbðsÞds
; t P 0:
Therefore
1�
Z t

0
wiðt � sÞbðsÞds

� �
v >

Z t

0
wiðt � sÞkrðsÞkdsþ kzðtÞk; t P 0; i ¼ 1; . . . ;n:
Hence
v >

Z t

0
wiðt � sÞkrðsÞkdsþ kzðtÞk þ v

Z t

0
wiðt � sÞbðsÞds

P jhiðtÞj þ v
Z t

0
kiðt; sÞds; t P 0; i ¼ 1; . . . ; n;
where kiðt; sÞ ¼ wiðt � sÞbðsÞ and hðtÞ ¼ ðh1ðtÞ; . . . ;hnðtÞÞT is defind by (2.10). h
Proof. (Proof of Theorem 3.2) According to (6.6) and (6.10) and the positivity of wi, we have
H0 :¼max
16i6n

sup
tP0
jhiðtÞj 6 kzk1 þ

krk1
d0
6 Mkwkt0

þ krk1
d0

<1; ð6:12Þ
where d0 :¼ minðd1; . . . ; dnÞ and t0 :¼max s;�inf tP0ft � rðtÞgf g. By (6.11), we obtain J0 < 1, so condition (i) in Theorem 5.3
holds with T ¼ 0, hence the solution x of (2.4) is bounded.

Lemma 6.1 yields that relation (6.9) is satisfied with v :¼max krk1
d0�kbk1

þ kzk1
1�kbk1d0

;1

 !
. Therefore the boundedness of the

solution and (6.12) gives
kxðtÞk < v :¼max
krk1

d0 � kbk1
þ d0kzk1

d0 � kbk1
;1

� �
; t P 0:
So (6.4) yields
kxðtÞk < max
krk1

d0 � kbk1
þ d0kzk1

d0 � kbk1
;1

� �
6

1
d0 � kbk1

krk1 þmax
d0Mkwkt0

d0 � kbk1
;1

� �
¼ c1krk1 þ c2; t P 0;
where
c1 :¼ 1
d0 � kbk1

and c2 :¼ max
d0Mkwkt0

d0 � kbk1
;1

� �
:

Hence the feedback control system (2.4) is BIBO stable. h
Proof. (Proof of Theorem 3.3) Suppose kwkt0
6 d1 and krk1 6 d2, where d1 and d2 will be specified later. According to (6.4)
kzk1 6 Mkwkt0
6 Md1:
So (6.12) yields
H0 :¼max
16i6n

sup
tP0
jhiðtÞj 6 kzk1 þ

krk1
d0
6 Md1 þ

d2

d0
:

Relation (6.11) implies J0 < 1. If the positive constants d1 and d2 are selected so that
Md1 þ
d2

d0
6

p� 1
p

1
p

� � 1
p�1

;

and
d1 <
1
p

� � 1
p�1

;
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then condition (i) of Theorem 5.5 holds. So
kxðtÞk < c; t P �t0
where
c :¼ 1
p

� � 1
p�1

:

Hence by Definition 2.2 the solution of the control system (2.4) is locally BIBO stable. h
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